Symposium Elena Montpellier 14-15 septembre 2017

I.Mottron, UdM

Back to prototypes: strategies for a longitudinal cohort

what exactly are we studying when we combine heterogeneous individuals into one "ASD" group, and what might we be *failing* to study by not going deeper into the most frank cases?

RESEARCH ARTICLE

"Frank" Presentations as a Novel Research Construct and Element of Diagnostic Decision-Making in Autism Spectrum Disorder

Ashley de Marchena and Judith Miller

Consensual, but possibly wrong

- Heterogenity / spectrum is superior to 'old' categorical approach
- Spectrum is a good model for autism (eg. rainbow colors/ continuous wavelength)
- Prevalence increases constantly, because autism is "better diagnosed"
- Animal models are informative an prototypical autism
- Prevalence of intellectual disability and epilepsy is increased in autism and reaches 25% of identified cases

'degraded'', invisible
 phenotype
'degraded'', but visible
 phenotype
 or less visible
 cs signs

Prototypical phenotype

Predictive identification error in presence of a degraded phenotype

The Mooney figure effect

Figure 1: Mooney or two-tone image (left) and its grayscale source image or "template" (right).

- The more degraded a phenotype is, the more the predictive error due to the prototype distorts what is actually seen, or conflict with others prototypes
- In case acertainent for a cohort, it is a problem, because standardised instruments and criteria are larger than the prototype

Spectrum vs. Prototypical approaches

Spectrum

- Epidemiologicaly oriented
- Psychiatry
- Dimensional
- Large Ns
- Diagnostic Cut-offs would be arbitrary or consensual
- Following blindly current, explicit criteria in diagnosis
- Phenotypically botorogonoous
- heterogeneous
- High sensitivity, low specificity

And trendy!

Prototypical

- Etiologically oriented
- Neuroscience
- Categorical
- Small Ns
- Diagnostic Cut-offs would reflect a 'natural" category
- Adding expertise to current criteria ("franck" autism)
 Phenotypically homogeneous
- High specificity, low sensitivity

Old fashioned?

two types of heterogeneity within DSM-5 autism:

Non-syndromic autism

- High IQ
- No recognizable syndrome
- No epilepsy, macrocephaly
- High sex ratio
- No LDDNM
- Highly similar, but they may be several prototypes

Syndromic autism

- Low IQ
- Recognizable SyndromeS with identified mutations
- Epilepsy, no macrocephaly
- Low sex ratio
- LDDNM
- Highly dissimilar but may reflext a superficial similarity accoss phenotypes

 Plausibly informative on prototypical autism

Unplausibly informative on prototypical autism

What is the optimal variability to recommand in a cohort?

- If you study a beetle from exacly similar individuals, you may get just males: you will learn how they feed, but not how they breed.
- If you tolerate a certain variation and get male and female individuals, you will learn how the feed and how they breed: optimal variability
- If you tolerate a large variation and get one of each type of beetles, you are at risk to miss both their feeding and breeding habits

What can be learnt form protypicality?

- Narrows theoretical constraints on etiological models for autism (eg: does epilepsy, fr. X, and intellectual deficiency should be included in etiological models?)
- Increases constraints on animal models
- Inform on protypical developmental history of autism

What can be lost in a protypicality approach?

- One or several prototypes? The "similarity detection" approach should be iterative and not limited to Kanner's autism
- The women issue: presentation of our cohort

Cohorte de Femmes adultes francophones se reconnaissant sur le spectre de l'autisme au 09/09/2017

N = 285, Age moyen: 39,6 ans
Français(e)s : 193 – Canadien(ne)s : 64

107 avec un diagnostic « spectre de l'autisme »; 109 non diagnostiquées; 64 indiquant des démarches en cours

Age moyen du diagnostic: 35,7 ans

My suggestion for a cohort

- Instead of increasing "spectrum Ns", select 3 protoypical cohorts:
- Prototypical autism
 Protoypical Male Asperger people
 Prototypical self diagnosed autistic Females

research questions adressed using a stratified, prototypical approach: revisiting DSM 5 clinical specifyers

Autism-epilepsy relations

Autism-epilepsy relations

Context: epilepsy is still a constraint on neurobiological models of autism Hypothesis: Epilepsy is associated to syndromic autism only Research target: is epilepsy a factor dissociating syndromic from primary autism? Impact: inform on delineation between prototypical and syndromic autism

1994 to 2004 papers obtained through Medline database using 'autism' + 'epilepsy' entry (n=230)

Exclusion criteria: 'reviews' (n=74), irrelevant (e.g.: therapeutic; n=84)

Inclusion criteria: (N= 71) New studies including participants with autism + epilepsy, with or without another clinical entity

Autism and epilepsy comorbid with:	Number of articles
Cerebral lesions	8
Biochemical anomaly	21
Rare genetic syndrome	29
Chromosomal anomaly	8
Autism and epilepsy without other	8
TOTAL	71

Our incidence data

Epilepsy in a population of 220 PDD with an IQ above 50 (AD: 92; AS: 75; PDDNOS: 58): **12**/ **220) = 5.4** %

in PDD, IQ above 70: 10/ 188 = 5.31 %

in PDD, IQ above 85: 5/149 = 3.33 %

Etiology of epilepsy in a sample of 220 persons with PDD

- Cerebral lesion: 8/12
 Rare genetic disease: 1/12
- Essential 3/12 (1.3%) (PDD-NOS: 2, Asperger. 1)

Autism-intelligence relations

Niveau Raven vs Niveau Wechsler

Research Report

The Level and Nature of Autistic Intelligence

Michelle Dawson,¹ Isabelle Soulières,^{1,2} Morton Ann Gernsbacher,³ and Laurent Mottron^{1,2}

¹Pervasive Developmental Disorders Specialized Clinic, Hôpital Rivière-des-Prairies, Montréal, Quebec, Canada;
²Université de Montréal, Montréal, Quebec, Canada; and ³University of Wisconsin–Madison

OPEN a ACCESS Freely available online

PLos one

The Level and Nature of Autistic Intelligence II: What about Asperger Syndrome?

Isabelle Soulières^{1,2}*, Michelle Dawson¹, Morton Ann Gernsbacher³, Laurent Mottron¹

1 Centre d'Excellence en Troubles Envahissants du Développement de l'Université de Montréal (CETEDUM), Montréal, Québec, Canada, 2 Department of Psychiaty, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, 3 Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America

Vraie et fausse DI

Is there a trend for increasing IQ w. age, or only verbal one?

- Context: Discrepancy between RPM and Wechsler
- Hypothesis : increased compliance to testing and increased exposition to complex materials w. age will result in increased measured intelligence, even non verbal
- Research target: specify the level and nature of autistic intelligence in prototypical and syndromic autism
- Impact: inform on delineation between prototypical and syndromic autism, and influence intervention programs.

Autism-language relations

The bayonette-shaped speech development in prototypical autism

- Context: uncertainties on the specificity of speech learning curve in SLI vs. Autism
- Hypothesis : absence of speech, followed by Prizant sequence, caracterizes prototypical autism
- Research target: add a specified speech developmental profile to known signs of prototypical autism
- Impact: Characterize speech prognoses in prototypical situations, and influence interventions

Autism-Asperger relations

Bimodal distribution of speech onset (two-words sentences)

Within non-syndromic autism: Two distinct (?) profiles

Autism = AS-SOD

- Speech Onset Delay (SOD)
- Strength in non verbal reasoning (Raven)
- Perceptively defined interests
- Hyperlexia

Asperger = AS-NoSOD

- Early speech
 Strength in verbal reasoning (similitude)
 Thematically defined
 - interests
- Early reading

Superior pitch perception in AS-SOD only

Contents lists available at ScienceDirect

Neuropsychologia

journal homepage: www.elsevier.com/locate/neuropsychologia

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neuropsychologia

NEUROPSYCHOLOGIA

Enhanced pure-tone pitch discrimination among persons with autism but not Asperger syndrome

Anna Bonnel^{a,b,c}, Stephen McAdams^d, Bennett Smith^d, Claude Berthiaume^c, Armando Bertone^{a,b,c}, Valter Ciocca^e, Jacob A. Burack^{a,b,c}, Laurent Mottron^{b,c,*}

Auditory discrimination and auditory sensory behaviours in autism spectrum disorders

Catherine R.G. Jones^a, Francesca Happé^b, Gillian Baird^c, Emily Simonoff^d, Anita J.S. Marsden^e, Jenifer Tregay^e, Rebecca J. Phillips^e, Usha Goswami^f, Jennifer M. Thomson^f, Tony Charman^{a,*}

Autism Spectrum

Figure 2. Inspection time distribution for (A) autism spectrum (n = 42) and typical (n = 30) groups; (B) autistic (n = 18), Asperger (n = 17) and typical (n = 30) groups. Error bars represent 1.5 standard deviation.

TYP

AUT

ASP

TYP

(A) TYP > SOD & SOD > TYP

(B) TYP > No SOD & No SOD > TYP

(C) SOD > No SOD & No SOD > SOD

Cortical reallocations may account for autistic heterogeneity

Speech acquisition predicts regions of enhanced cortical response to auditory stimulation in autism spectrum individuals

CrossMark

F. Samson ^{a, b, *}, T.A. Zeffiro ^c, J. Doyon ^{d, e}, H. Benali ^e, L. Mottron ^b

If we target new findings, our research questions and methodology should differ from what is done elsewhwere